COURTNEY MILLETT

Mechanical Option Class of 2015

The Pennsylvania State University

April 14, 2015

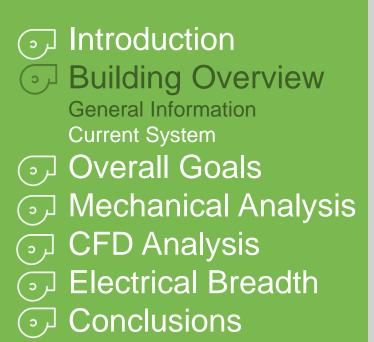
1

MORTON HOSPITAL EXPANSION

Taunton, MA

Advisor: Dr. Bahnfleth

J Introduction Building Overview • Overall Goals Mechanical Analysis • CFD Analysis • Electrical Breadth • Conclusions


Image: Section 1.

MORTON HOSPITAL EXPANSION

• Building Overview • Overall Goals • Mechanical Analysis OFD Analysis • Electrical Breadth • Conclusions

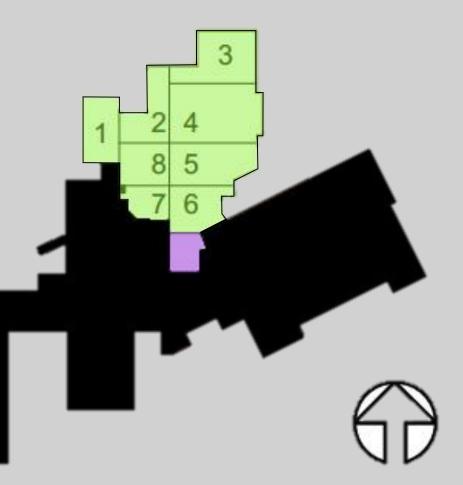
🚱 🕅 \$

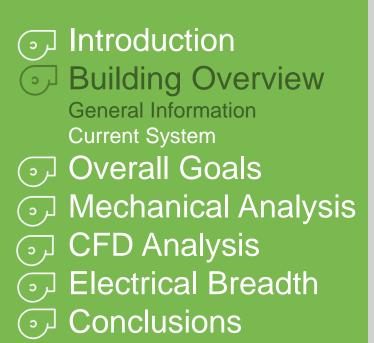
Owner:

Occupancy: Hospital

Location: Taunton, MA

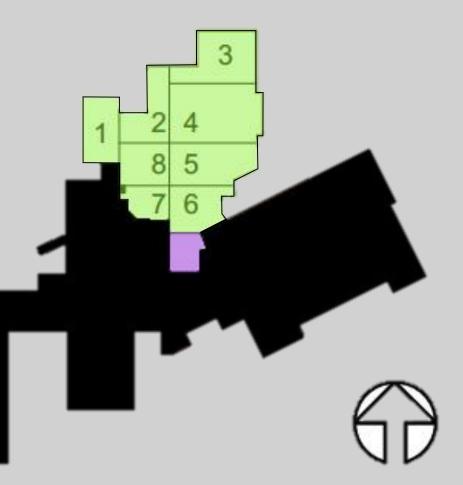
MORTON HOSPITAL EXPANSION

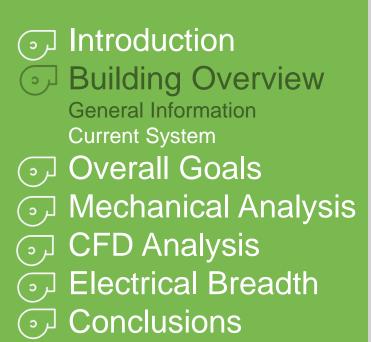

General Information:


- **Steward Healthcare**

Existing Building Area: 100,000 SF

Expansion Area: 40,000 SF

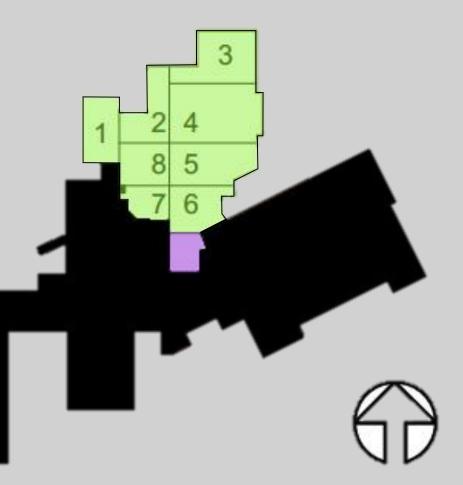



MORTON HOSPITAL EXPANSION

General Information:

- Phase 1:
 - MRI

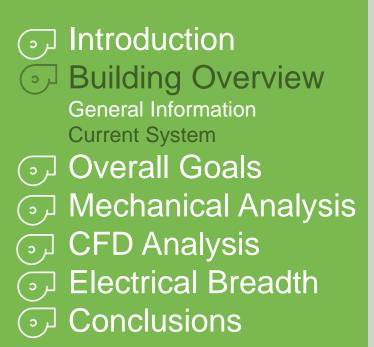
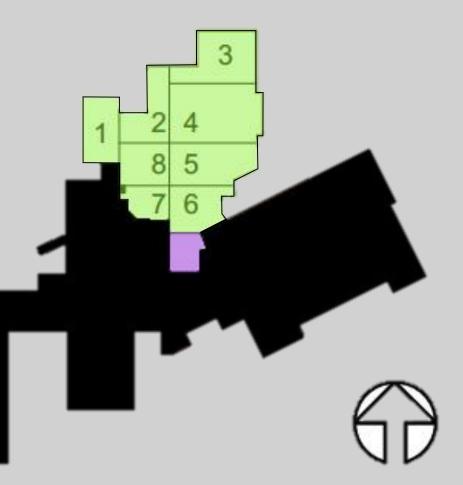
General Information: Phase 1:

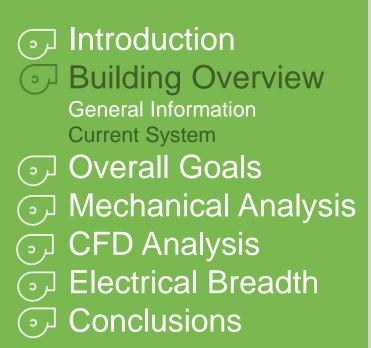

MORTON HOSPITAL EXPANSION

- MRI

Phase 2:

- **Emergency Department**
- Patient Treatment Rooms
- **Psychiatric Ward**
- **Isolation Rooms**

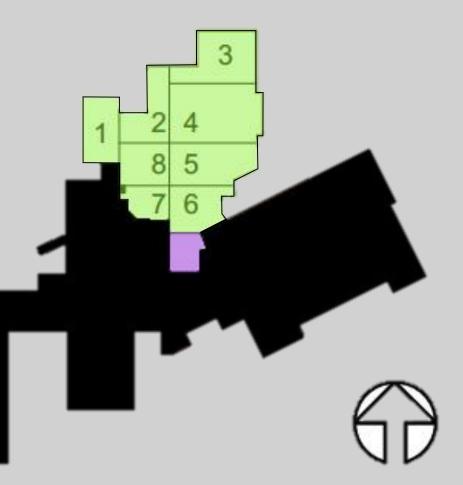



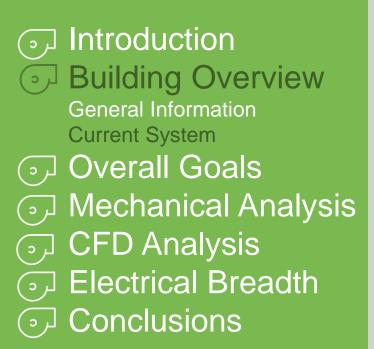

Image: Second Second

Current System: Phase 1: AHU-1:

MORTON HOSPITAL EXPANSION

- 2500 CFM **Steam Preheat Coil** DX Cooling Coil
- **Electric Reheat**


Current System:

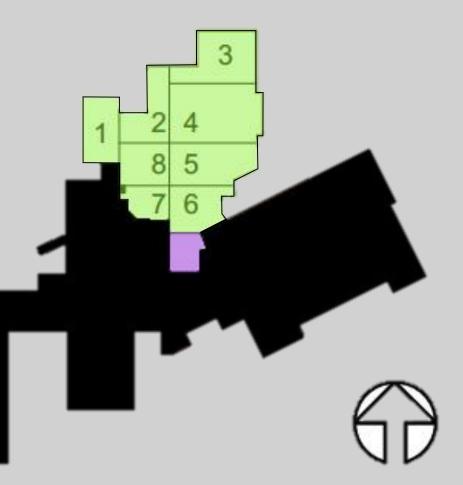


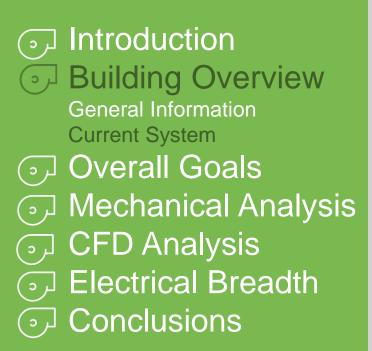
MORTON HOSPITAL EXPANSION

- Phase 1:
 - AHU-1: 2500 CFM **Steam Preheat Coil** DX Cooling Coil
 - **Electric Reheat**
 - Phase 2:
 - 35,000 CFM Hot Water Preheat Coil Chilled Water Cooling Coil
 - VAV Box Hot Water Reheat

😧 🕅 \$

Current Heating System:


MORTON HOSPITAL EXPANSION


Existing Building Steam Plant

LPS to Steam to HW Heat Exchangers

- 180° F HW Supply
- 140° F HW Return

آن

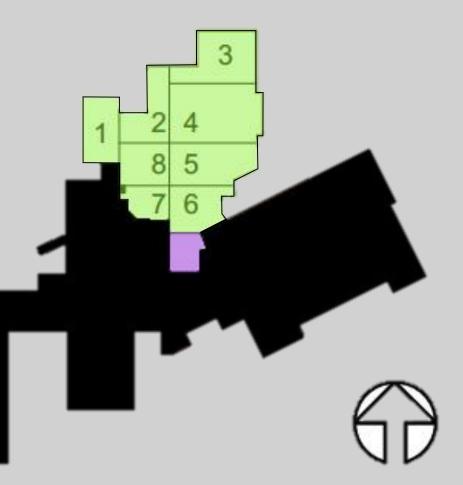
Current Heating System:

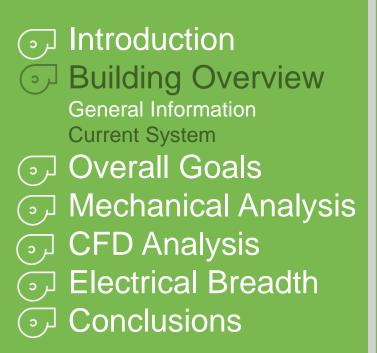
Current Cooling System:

MORTON HOSPITAL EXPANSION

Existing Building Steam Plant

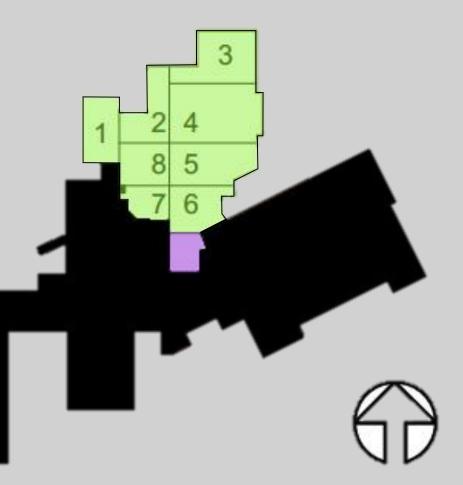
LPS to Steam to HW Heat Exchangers 180° F HW Supply

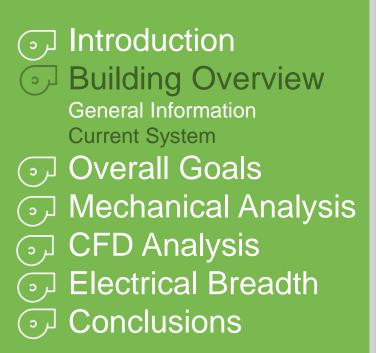

140° F HW Return


New 155 Ton Air Cooled Chiller

55° F CHW Supply

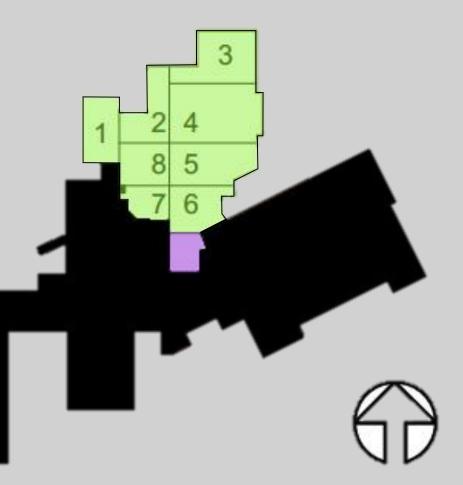
43° F CHW Return

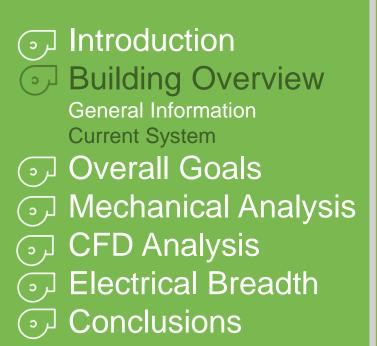

🚱 🕅 \$


MORTON HOSPITAL EXPANSION ASHRAE 90.1 - 2010:

TAE
Zone
3B, 3C, 4B, 4C, 5B
1B, 2B,5C
6B
1A, 2A, 3A, 4A, 5A, 6A
7,8
NR—Not required

ABLE 6.5.6.1 Exhaust Air Energy Recovery Requirements											
	% Outdoor Air at Full Design Airflow Rate										
	≥30% and < 40%	≥40% and < 50%	≥50% and < 60%	≥60% and < 70%	≥70% and < 80%	≥80%					
	Design Supply Fan Airflow Rate (cfm)										
	NR	NR	NR	NR	≥5000	≥5000					
	NR	NR	≥26000	≥12000	≥5000	≥4000					
	≥11000	≥5500	≥4500	≥3500	≥2500	≥1500					
	≥5500	≥4500	≥3500	≥2000	≥1000	>0					
	≥2500	≥1000	>0	>0	>0	>0					

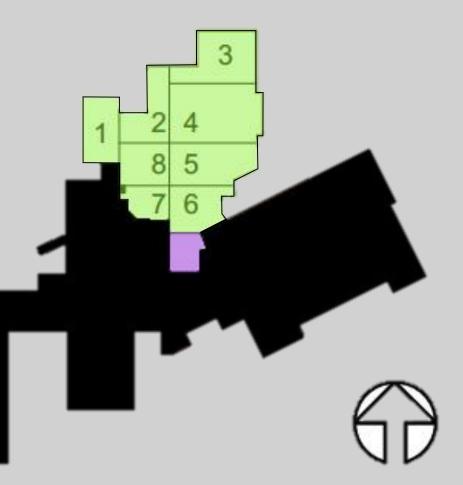



🚱 🕅 \$

MORTON HOSPITAL EXPANSION ASHRAE 90.1 - 2010:

TABLE 6.5.6.1 Exhaust Air Energy Recovery Requirements									
	% Outdoor Air at Full Design Airflow Rate								
Zone	≥30% and < 40%	≥40% and < 50%	≥50% and < 60%	≥60% and < 70%	≥70% and < 80%	≥80%			
	Design Supply Fan Airflow Rate (cfm)								
3B, 3C, 4B, 4C, 5B	NR	NR	NR	NR	≥5000	≥5000			
1B, 2B,5C	NR	NR	≥26000	≥12000	≥5000	≥4000			
6B	≥11000	≥5500	≥4500	≥3500	≥2500	≥1500			
1A, 2A, 3A, 4A, 5A, 6A	≥5500	≥4500	≥3500	≥2000	≥1000	>0			
7,8	≥2500	≥1000	>0	>0	>0	>0			
NR—Not required									

27% Outdoor Air



MORTON HOSPITAL EXPANSION ASHRAE 90.1 - 2013:

	% Outdoor Air at Full Design Airflow Rate								
Zone	≥10% and <20%	≥20% and <30%	≥30% and <40%	≥40% and <50%	≥50% and <60%	≥60% and <70%	≥70% and < 80%	≥80%	
	Design Supply Fan Airflow Rate, cfm								
3C	NR	NR	NR	NR	NR	NR	NR	NR	
1B, 2B, 3B, 4C, 5C	NR	≥19,500	≥9000	≥5000	≥4000	≥3000	≥1500	>0	
1A, 2A, 3A, 4B, 5B	≥2500	≥2000	≥1000	≥500	>0	>0	>0	>0	
4A, 5A, 6A, 6B, 7, 8	>0	>0	>0	>0	>0	>0	>0	>0	

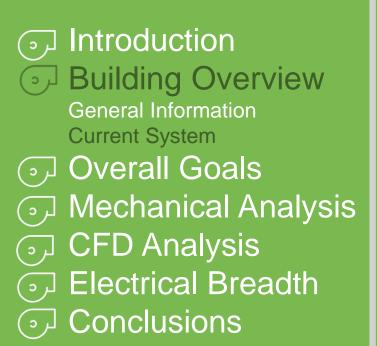
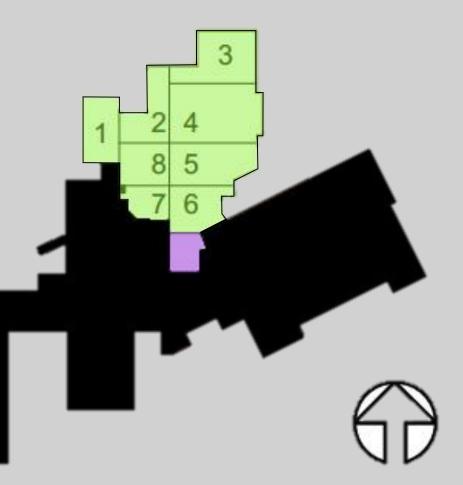



Image: Second Second

MORTON HOSPITAL EXPANSION ASHRAE 90.1 - 2013:

TABLE 6.5.6.1-2 Exhaust Air Energy Recovery Requirements for Ventilation Systems Operating Greater than or Equal to 8000 Hours per Year										
% Outdoor Air at Full Design Airflow Rate										
Zone	≥10% and <20%	≥20% and <30%	≥30% and <40%	≥40% and <50%	≥50% and <60%	≥60% and <70%	≥70% and < 80%	≥80%		
	Design Supply Fan Airflow Rate, cfm									
3C	NR	NR	NR	NR	NR	NR	NR	NR		
1B, 2B, 3B, 4C, 5C	NR	≥19,500	≥9000	≥5000	≥4000	≥3000	≥1500	>0		
1A, 2A, 3A, 4B, 5B	≥2500	≥2000	≥1000	≥500	>0	>0	>0	>0		
4A, 5A, 6A, 6B, 7, 8	>0	>0	>0	>0	>0	>0	>0	>0		
							-			

27% Outdoor Air

J Introduction Building Overview • Overall Goals Mechanical Analysis CFD Analysis Electrical Breadth

MORTON HOSPITAL EXPANSION

System Feasibility

→ Building Overview • Overall Goals Mechanical Analysis CFD Analysis • Electrical Breadth • Conclusions

MORTON HOSPITAL EXPANSION

System Feasibility

Energy Consciousness

J Introduction Building Overview • Overall Goals Mechanical Analysis ○ CFD Analysis • Electrical Breadth • Conclusions

MORTON HOSPITAL EXPANSION

System Feasibility

Energy Consciousness

Economically Practical

J Introduction Building Overview • Overall Goals Mechanical Analysis • CFD Analysis • Electrical Breadth • Conclusions

🚱 🕅 💲 😃

S

MORTON HOSPITAL EXPANSION

System Feasibility

Energy Consciousness

Economically Practical

(U) Thermal Comfort

Image: Second Second

MECHANICAL SYSTEM ANALYSIS

Key Considerations: Equipment First Cost System Feasibility Life Cycle Cost **Energy Consumption**

(7)

() ALTERNATIVE 1: Water-Cooled Chiller & **Air-to-Air Heat Recovery**

MECHANICAL SYSTEM ANALYSIS

Key Considerations: Equipment First Cost System Feasibility Life Cycle Cost **Energy Consumption**

 Introduction
 ■ **Building Overview** • Overall Goals Mechanical Analysis Alternative 1 Alternative 2 Overall Comparison CFD Analysis • Electrical Breadth • Conclusions

() ALTERNATIVE 2: Variable Refrigerant Flow

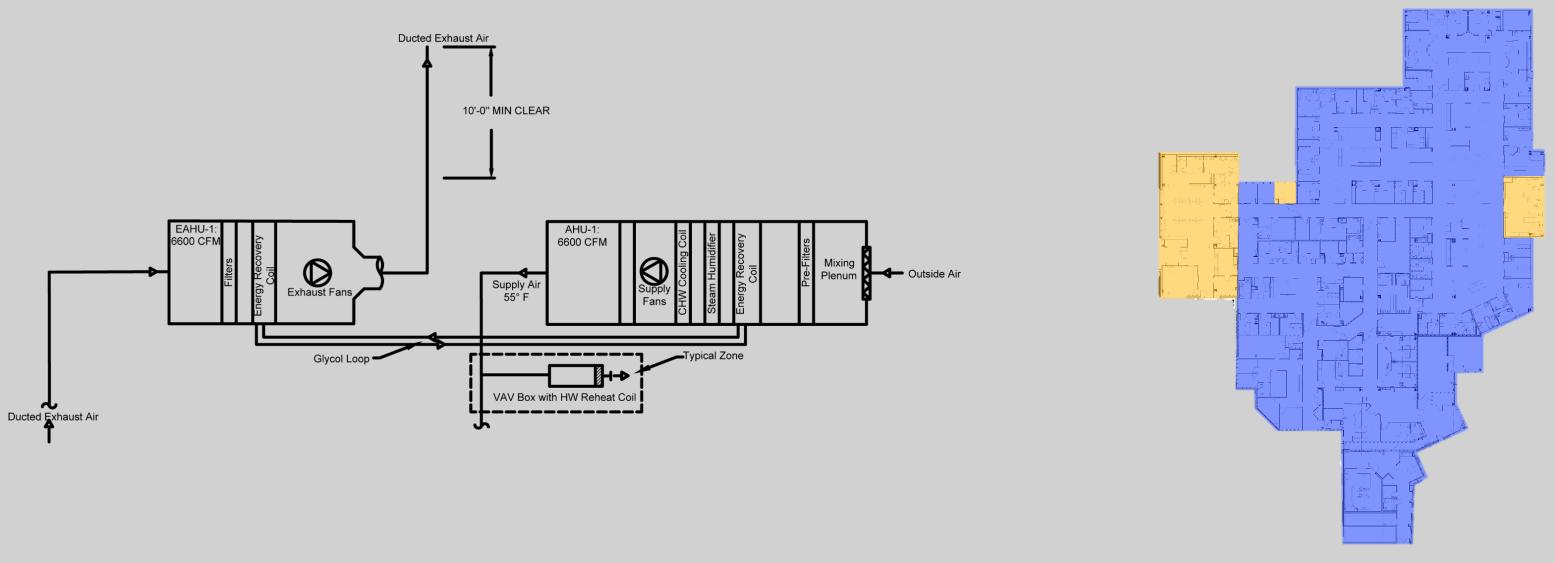
ALTERNATIVE 1: Water-Cooled Chiller & **Air-to-Air Heat Recovery**

MECHANICAL SYSTEM ANALYSIS

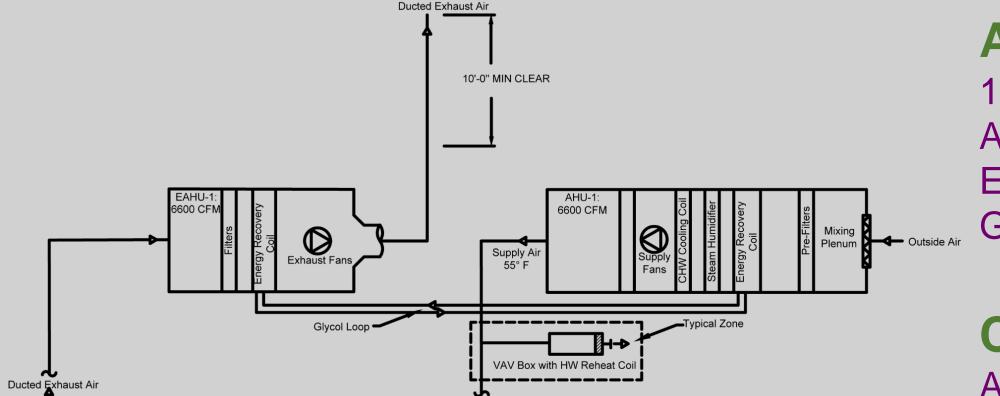
Key Considerations: Equipment First Cost System Feasibility Life Cycle Cost **Energy Consumption**

() ALTERNATIVE 1: Water-Cooled Chiller & **Air-to-Air Heat Recovery**

MECHANICAL SYSTEM ANALYSIS

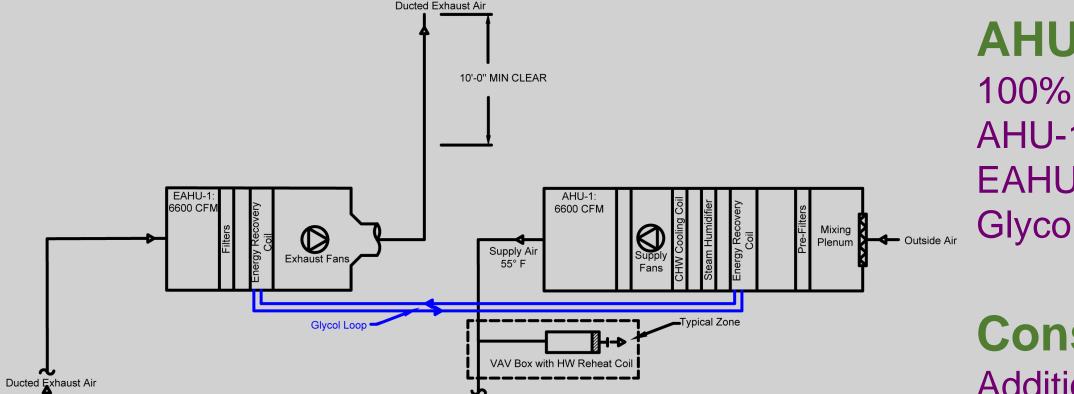

Air-to-Air Energy Recovery

E


Air-to-Air Energy Recovery

Air-to-Air Energy Recovery

AHU-1 System Features:


100% Outside Air AHU-1: 6600 CFM EAHU-1: 6600 CFM **Glycol Solution Loop**

Considerations:

Additional Equipment Cost ASHRAE 90.1 – 2013 Compliance **Cross-Contamination**

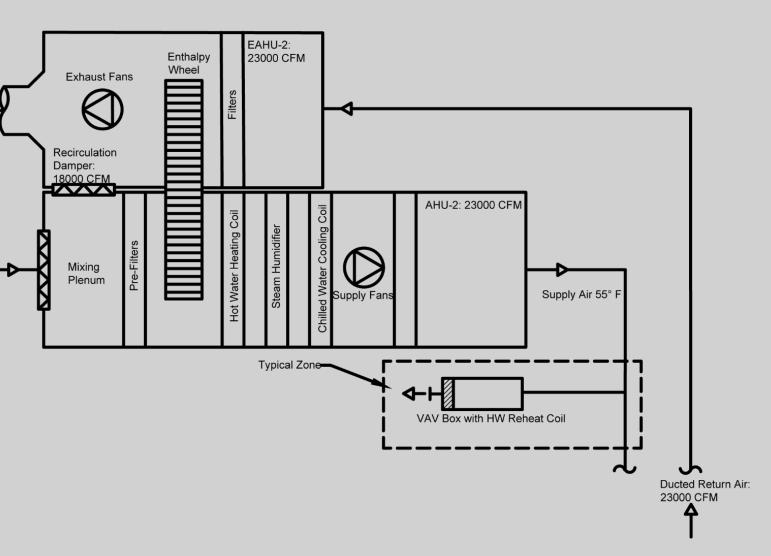
Air-to-Air Energy Recovery

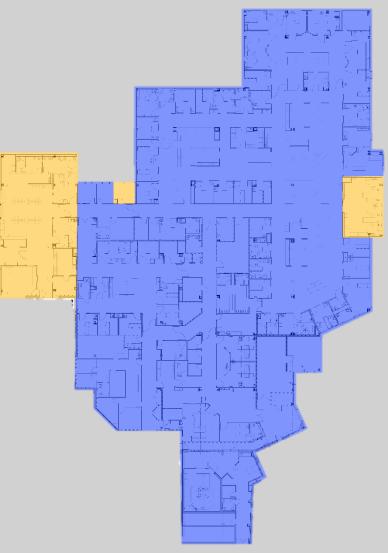
AHU-1 System Features:

100% Outside Air AHU-1: 6600 CFM EAHU-1: 6600 CFM **Glycol Solution Loop**

Considerations:

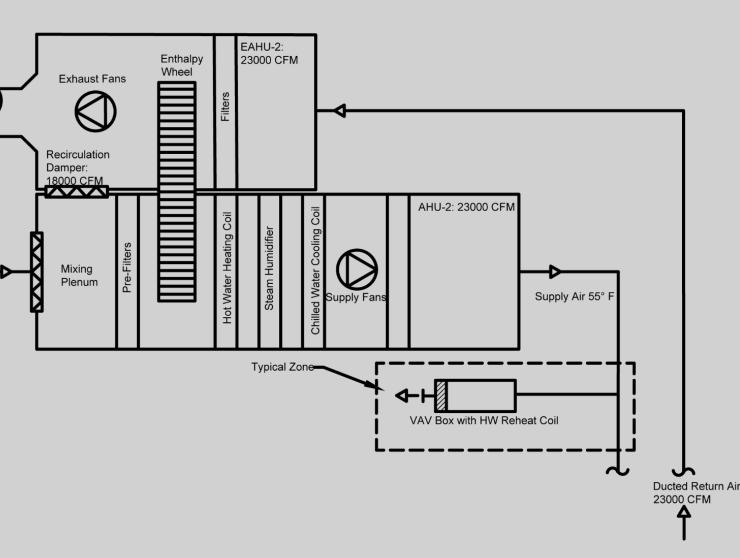
Additional Equipment Cost ASHRAE 90.1 – 2013 Compliance **Cross-Contamination**




Air-to-Air Energy Ducted Exhaust Air: 5000 CFM Recovery

10'-0" MIN CLEAR

Outside Air: 5000 CFM



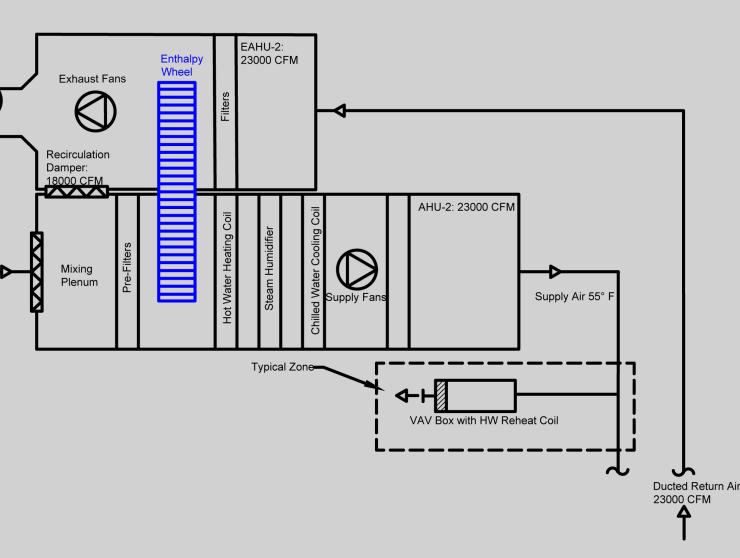
Air-to-Air Energy Ducted Exhaust Air: 5000 CFM Recovery

10'-0" MIN CLEAR

Outside Air: 5000 CFM

AHU-2 System Features: AHU-2: 23,000 CFM EAHU-2: 23,000 CFM Enthalpy Wheel

Considerations: Additional Equipment Cost ASHRAE 90.1 – 2013 Compliance


Air-to-Air Energy Recovery

Outside Air:

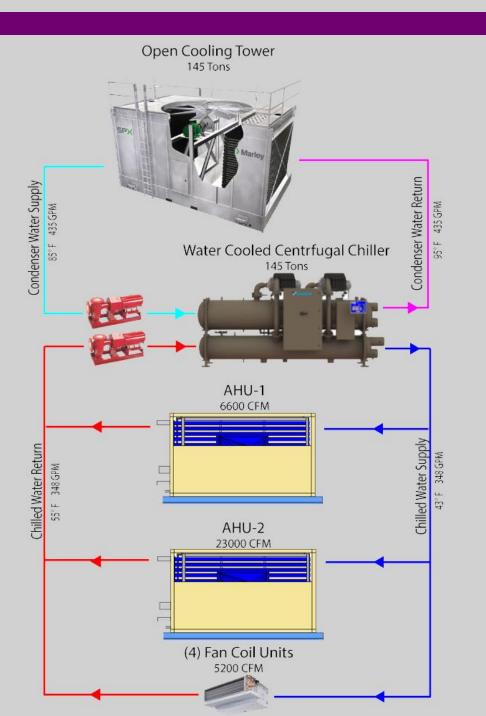
Ducted Exhaust Air: 5000 CFM

10'-0" MIN CLEAR

AHU-2 System Features: AHU-2: 23,000 CFM EAHU-2: 23,000 CFM Enthalpy Wheel

Considerations: Additional Equipment Cost ASHRAE 90.1 – 2013 Compliance

() Introduction Building Overview Overall Goals J Mechanical Analysis Alternative 1 Overall System Energy Consumption **Operating Cost** Alternative 2 Overall Comparison CFD Analysis Electrical Breadth • Conclusions


Chilled Water and Condenser Water Loop

(J Introduction Building Overview Overall Goals Mechanical Analysis Alternative 1 **Overall System** Energy Consumption **Operating Cost** Alternative 2 Overall Comparison G CFD Analysis Similar Strength (□) Electrical Breadth • Conclusions

(E)

Chilled Water and Condenser Water Loop

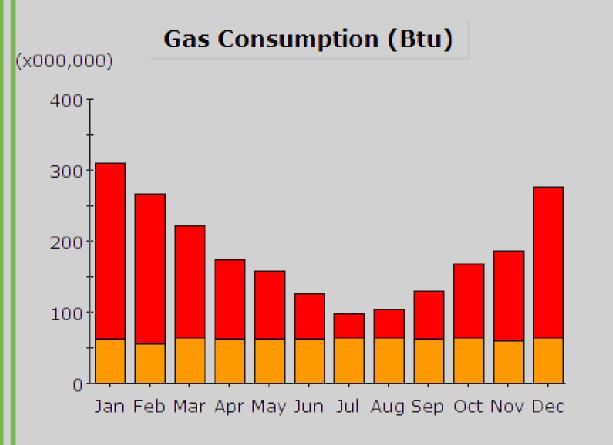
MECHANICAL SYSTEM ANALYSIS ALTERNATIVE 1

System Features:

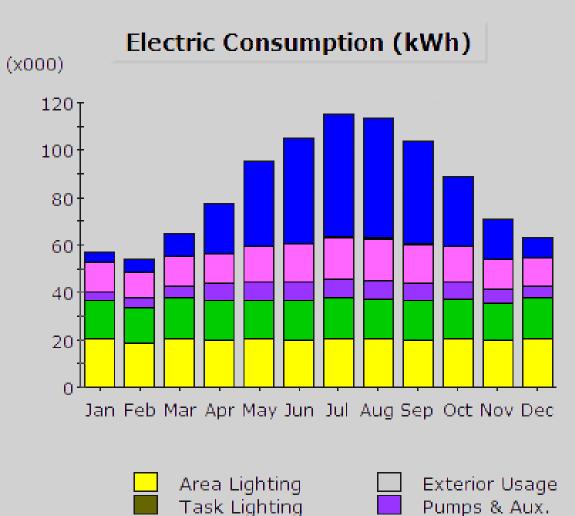
145 Ton Water Cooled Centrifugal Chiller 1,726,200 Btu/hr Open Cooling Tower 43° F Chilled Water Supply 85° F Condenser Water Supply

Considerations:

Additional Equipment Cost **Re-evaluation of Roof Structure**


In \$

Electric & Natural Gas Consumption

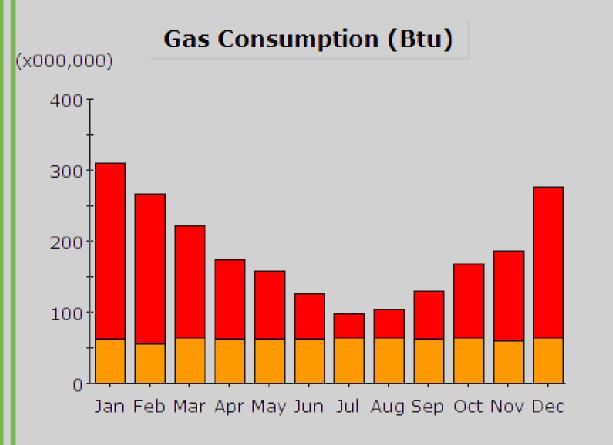

Electric & Natural Gas Consumption

Water Heating Ht Pump Supp. Space Heating

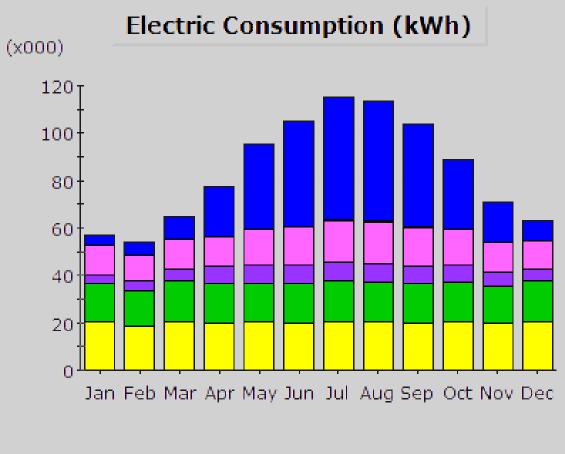
Refrigeration Heat Rejection Space Cooling

MECHANICAL SYSTEM ANALYSIS ALTERNATIVE 1

Misc. Equipment


Ventilation Fan

Total Energy Savings: 10% Savings in Electrical Consumption 34% Savings in Natural Gas Consumption


 \mathbf{E}

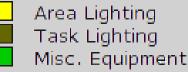
Electric & Natural Gas Consumption

Water Heating Ht Pump Supp. Space Heating Refrigeration
 Heat Rejection
 Space Cooling

MECHANICAL SYSTEM ANALYSIS ALTERNATIVE 1

Exterior Usage

Pumps & Aux.


Ventilation Fan

Reductions:

8.5% Reduction in Space Cooling41% Reduction in Fan Energy44% Reduction in Space Heating

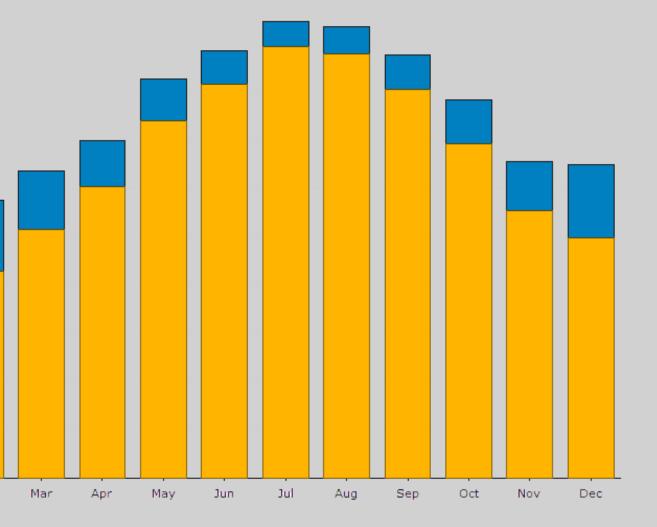
Increases:

83% Increase in Pump Energy

() Introduction Building Overview Overall Goals J Mechanical Analysis Alternative 1 Overall System Energy Consumption Operating Cost Alternative 2

Overall Comparison CFD Analysis S Electrical Breadth • Conclusions

Annual Operating Cost



Annual Operating Cost

MECHANICAL SYSTEM ANALYSIS ALTERNATIVE 1

Custom Gas Rate (annual bill: \$ 24,400)

Total Cost Savings:

15% Total Annual Savings 10% Savings in Electrical Costs 34% Savings in Natural Gas Consumption \$4.47/SF

Total Annual Bill Across All Rates: \$ 182,169

Custom Elec Rate (annual bill: \$ 157,769)

Monthly Utility Bills (\$)

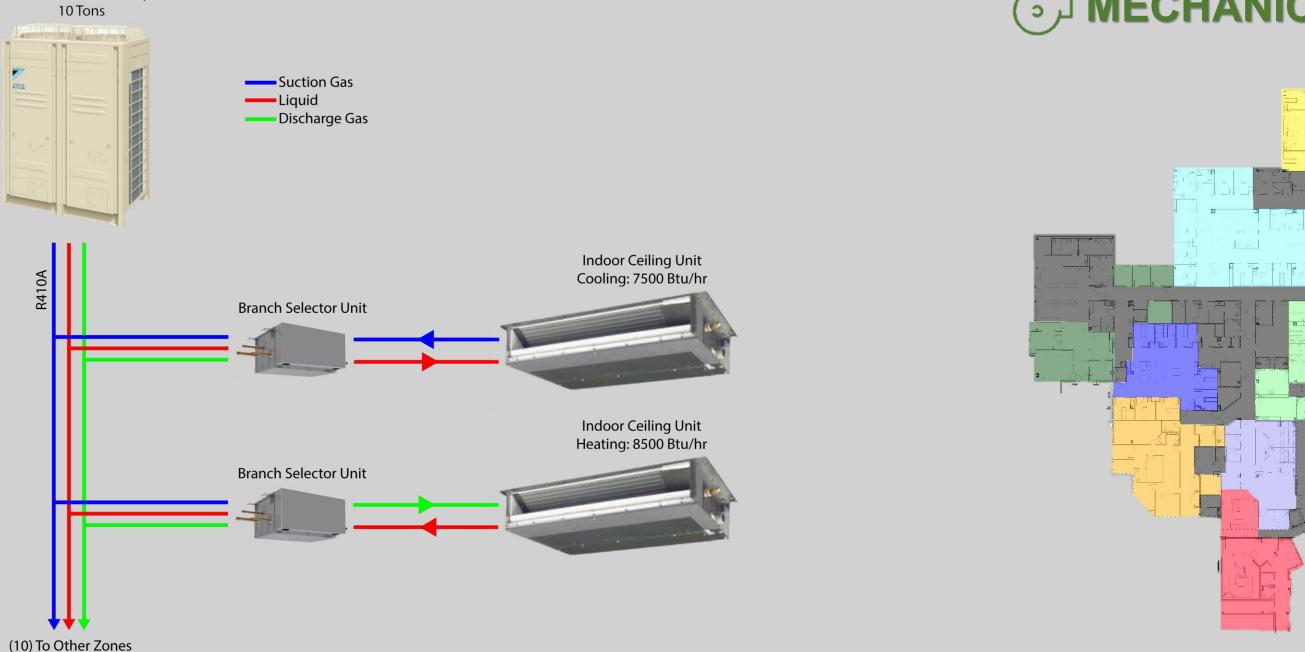
Solution → ALTERNATIVE 2: **Variable Refrigerant Flow**

MECHANICAL SYSTEM ANALYSIS

Building Overview Overall Goals J Mechanical Analysis Alternative 1 Alternative 2 **Overall System** ASHRAE 15 Compliance Energy Consumption Operating Cost

Overall Comparison CFD Analysis Electrical Breadth • Conclusions

VRF Refrigerant Loop

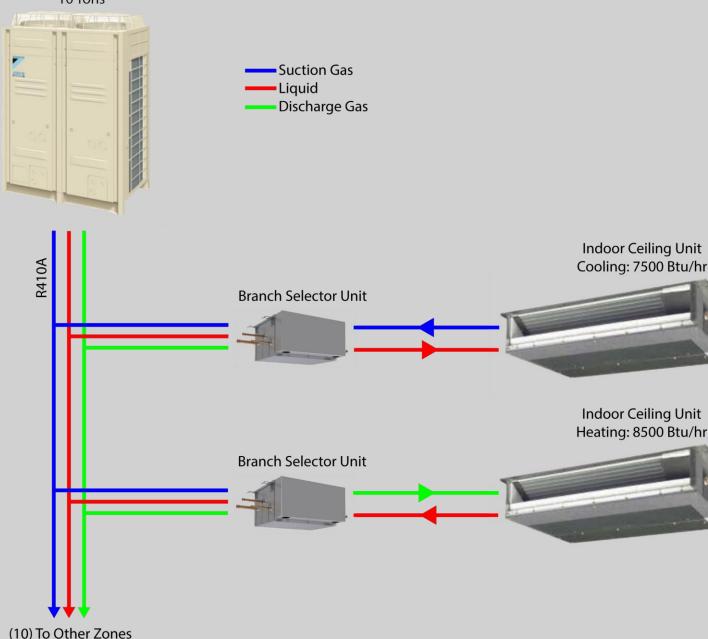

 Introduction
 ■ Building Overview • Overall Goals Mechanical Analysis Alternative 1 Alternative 2

Overall System ASHRAE 15 Compliance Energy Consumption Operating Cost Overall Comparison CFD Analysis Electrical Breadth • Conclusions

E

VRF Refrigerant Loop

(8) Outdoor Heat Recovery Unit 10 Tons



(J Introduction **Building Overview** • Overall Goals Mechanical Analysis Alternative 1 Alternative 2

Overall System ASHRAE 15 Compliance Energy Consumption **Operating Cost** Overall Comparison G CFD Analysis • Electrical Breadth • Conclusions

VRF Refrigerant Loop

(8) Outdoor Heat Recovery Unit 10 Tons

MECHANICAL SYSTEM ANALYSIS ALTERNATIVE 2

System Features: (8) 10 Ton Outdoor Units **Refrigerant R410A** Heat Recovery

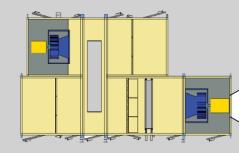
Considerations: Additional Equipment Cost ASHRAE 15 – 2013 Compliance

DOAS Ventilation

Building Overview Overall Goals J Mechanical Analysis Alternative 1 Alternative 2 **Overall System** ASHRAE 15 Compliance Energy Consumption Operating Cost Overall Comparison CFD Analysis Electrical Breadth • Conclusions

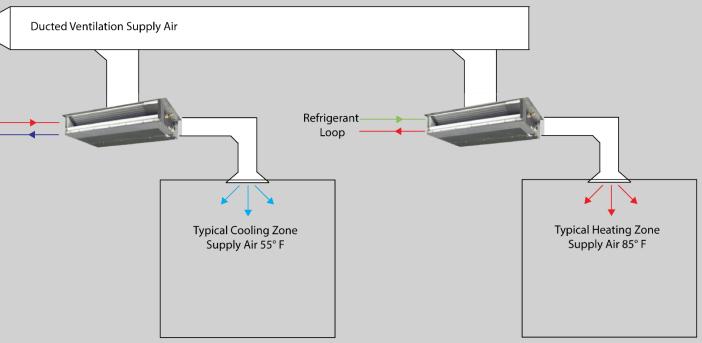
🚯 🕅 💲 🙂

○ Introduction Building Overview Overall Goals Mechanical Analysis Alternative 1


Alternative 2

🛞 M 💲

Overall System ASHRAE 15 Compliance Energy Consumption **Operating Cost** Overall Comparison G CFD Analysis Sector Secto • Conclusions


DOAS Ventilation

Dedicated Outdoor Air Unit (DOAS-1)

Refrigerant____ Loop

MECHANICAL SYSTEM ANALYSIS ALTERNATIVE 2

System Features: DOAS-1: 14,500 CFM EAHU-1: 14,500 CFM Enthalpy Wheel Heat Recovery

Considerations: ASHRAE 170 – 2013 Ventilation Requirements

() Introduction Building Overview Overall Goals J Mechanical Analysis Alternative 1 Alternative 2

Overall System ASHRAE 15 Compliance Energy Consumption Operating Cost Overall Comparison CFD Analysis Electrical Breadth • Conclusions

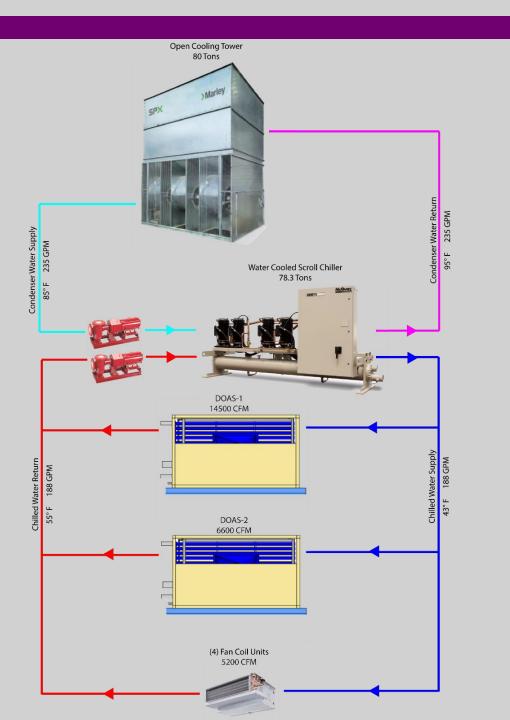
🚯 🕅 💲 🙂

Chilled Water & Condenser Water Loop

(→ Introduction) Building Overview Overall Goals Mechanical Analysis Alternative 1 Alternative 2

Overall System ASHRAE 15 Compliance Energy Consumption **Operating Cost** Overall Comparison G CFD Analysis Sector Secto • Conclusions

(3) (1) (3)


Chilled Water & Condenser Water Loop

System Features: 78 Ton Chiller 970,400 Btu/hr Cooling Tower 43° F Chilled Water Supply 85° F Condenser Water Supply

Considerations:

Reduced Equipment Sizes Reduced Equipment Cost

() Introduction Building Overview Overall Goals J Mechanical Analysis Alternative 1 Alternative 2 Overall System

ASHRAE 15 Compliance Energy Consumption Operating Cost Overall Comparison CFD Analysis Electrical Breadth • Conclusions

ASHRAE 15: **Safety Standard for Refrigeration Systems**

 Introduction
 ■ Building Overview Overall Goals Mechanical Analysis Alternative 1 Alternative 2 Overall System ASHRAE 15 Compliance

Energy Consumption **Operating Cost** Overall Comparison ○ CFD Analysis Electrical Breadth • Conclusions

ASHRAE 15: **Safety Standard for Refrigeration Systems**

		SAFETY GROUP				
F IL NA CM	Higher Flammability	A3	B3			
R M	Lower Flammability	A2	B2			
АВ 5 I		A2_L*	- B2L* -			
IL NI GT Y	No Flame Propagation	A1	B1			
		Lower Toxicity	Higher Toxicity			

INCREASING TOXICITY

* A2L and B2L are lower flammability refrigerants with a maximum burning velocity of ≤3.9 in./s (10 cm/s)

ASHRAE 34: **Refrigerant Safety Group Classifications**

 Introduction
 ■ Building Overview Overall Goals Mechanical Analysis Alternative 1 Alternative 2 Overall System ASHRAE 15 Compliance

Energy Consumption **Operating Cost** Overall Comparison ○ CFD Analysis Electrical Breadth • Conclusions

ASHRAE 15: **Safety Standard for Refrigeration Systems**

_ 1		SAFETY GROUP					
F L NA CM	Higher Flammability	A3	В3				
R M	Lower Flammability	A2	B2				
A B S I I L N I G T Y		A2_L*	- B2L* -				
	No Flame Propagation	A1	B1				
		Lower Toxicity	Higher Toxicity				
		INCREASING TOXICITY					

* A2L and B2L are lower flammability refrigerants with a maximum burning velocity of ≤3.9 in./s (10 cm/s)

ASHRAE 34: **Refrigerant Safety Group Classifications**

(→) Introduction Building Overview Overall Goals Mechanical Analysis Alternative 1 Alternative 2 Overall System ASHRAE 15 Compliance Energy Consumption **Operating Cost** Overall Comparison CFD Analysis S Electrical Breadth

• Conclusions

Ŵ

ASHRAE 15: **Safety Standard for Refrigeration Systems**

	or tra
Refrigerant Number	Con
Zeotropes 409A	R-22/124/1
409B	R-22/124/1
410A ⁱ	R-32/125 (
$410B^{i}$	R-32/125 (
411A ^e	R-1270/22
411B ^e	R-1270/22
412A	R-22/218/1
413A	R-218/134

MECHANICAL SYSTEM ANALYSIS ALTERNATIVE 2

© ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution ansmission in either print or digital form is not permitted without ASHRAE's prior written permission

TABLE 4-2 Data and Safety Classifications for Refrigerant Blends

	Composition Tolerances	OEL ^h , ppm v/v	Safety Group	RCL ^a			Highly Toxic
nposition (Mass %)				(ppm v/v)	(lb/Mcf)	(g/m ³)	or Toxic ^f Under Code Classification
142b (60.0/25.0/15.0)	(±2.0/±2.0/±1.0)	1000	A1	29,000	7.1	110	Neither
142b (65.0/25.0/10.0)	(±2.0/±2.0/±1.0)	1000	A1	30,000	7.3	120	Neither
(50.0/50.0)	(+0.5, -1.5/+1.5, -0.5)	1000	A1	140,000	26	420	Neither
(45.0/55.0)	(±1.0/±1.0)		A1	140,000	27	430	Neither
2/152a (1.5/87.5/11.0)	(+0.0, -1.0/+2.0, -0.0/+0.0, -1.0)	990	A2	14,000	2.9	46	Neither
2/152a (3.0/94.0/3.0)	(+0.0, -1.0/+2.0, -0.0/+0.0, -1.0)	980	A2	13,000	2.8	45	Neither
142b (70.0/5.0/25.0)	(±2.0/±2.0/±1.0)	1000	A2	22,000	5.1	82	Neither
a/600a (9.0/88.0/3.0)	(±1.0/±2.0/+0.01.0)	1000	A2	22.000	5.8	94	Neither

ASHRAE 34: Table 4-2 Data and Safety Classifications for Blends

Considerations: Institutional Occupancy: Reduce RCL by 50%

(→) Introduction Building Overview Overall Goals Mechanical Analysis Alternative 1 Alternative 2 Overall System ASHRAE 15 Compliance Energy Consumption **Operating Cost** Overall Comparison CFD Analysis Solution Electrical Breadth

• Conclusions

Ű

(A)

ASHRAE 15: Safety Standard for Refrigeration Systems

	or tr		
Refrigerant Number	Con		
ceotropes 409A	R-22/124/		
409B	R-22/124/		
410A ⁱ	R-32/125 (
410B ⁱ	R-32/125 (
411A ^e	R-1270/22		
411B ^e	R-1270/22		
412A	R-22/218/		
413A	R-218/134		

MECHANICAL SYSTEM ANALYSIS ALTERNATIVE 2

© ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution ansmission in either print or digital form is not permitted without ASHRAE's prior written permission

TABLE 4-2 Data and Safety Classifications for Refrigerant Blends

	Composition Tolerances	OEL ^h , ppm v/v	Safety Group	RCL ^a			Highly Toxic
mposition (Mass %)				(ppm v/v)	(lb/Mcf)	(g/m ³)	or Toxic ^f Under Code Classification
142b (60.0/25.0/15.0)	(±2.0/±2.0/±1.0)	1000	A1	29,000	7.1	110	Neither
142b (65.0/25.0/10.0)	(±2.0/±2.0/±1.0)	1000	A1	30,000	7.3	120	Neither
(50.0/50.0)	(+0.5, -1.5/+1.5, -0.5)	1000	Al	140,000	26	420	Neither
(45.0/55.0)	(±1.0/±1.0)		A1	140,000	27	430	Neither
2/152a (1.5/87.5/11.0)	(+0.0, -1.0/+2.0, -0.0/+0.0, -1.0)	990	A2	14,000	2.9	46	Neither
2/152a (3.0/94.0/3.0)	(+0.0, -1.0/+2.0, -0.0/+0.0, -1.0)	980	A2	13,000	2.8	45	Neither
142b (70.0/5.0/25.0)	(±2.0/±2.0/±1.0)	1000	A2	22,000	5.1	82	Neither
4a/600a (9.0/88.0/3.0)	(±1.0/±2.0/+0.01.0)	1000	A2	22.000	5.8	94	Neither

ASHRAE 34: Table 4-2 Data and Safety Classifications for Blends

Considerations: Institutional Occupancy: Reduce RCL by 50%

() Introduction Building Overview Overall Goals J Mechanical Analysis Alternative 1 Alternative 2 Overall System ASHRAE 15 Compliance Energy Consumption Operating Cost Overall Comparison CFD Analysis Electrical Breadth • Conclusions

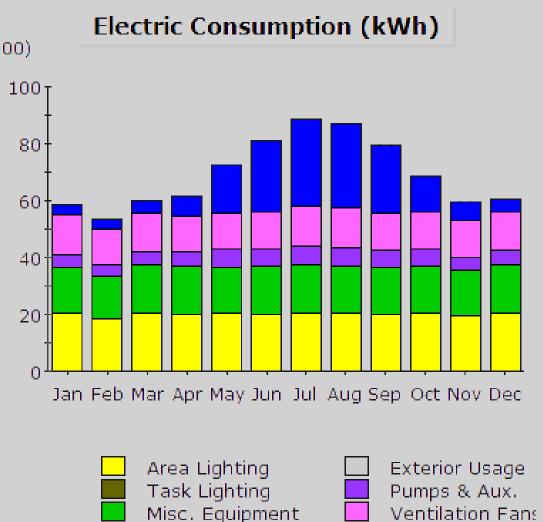
Electric & Natural Gas Consumption

(J Introduction Building Overview Overall Goals Mechanical Analysis Alternative 1 Alternative 2

Overall System ASHRAE 15 Compliance Energy Consumption **Operating Cost** Overall Comparison ○ CFD Analysis S Electrical Breadth • Conclusions

 \mathbf{E}

Electric & Natural Gas Consumption


Gas Consumption (Btu) (x000,000) 250_T 200 150 100 50+ Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

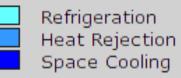
Water Heating Ht Pump Supp. Space Heating

(x000)

MECHANICAL SYSTEM ANALYSIS ALTERNATIVE 2

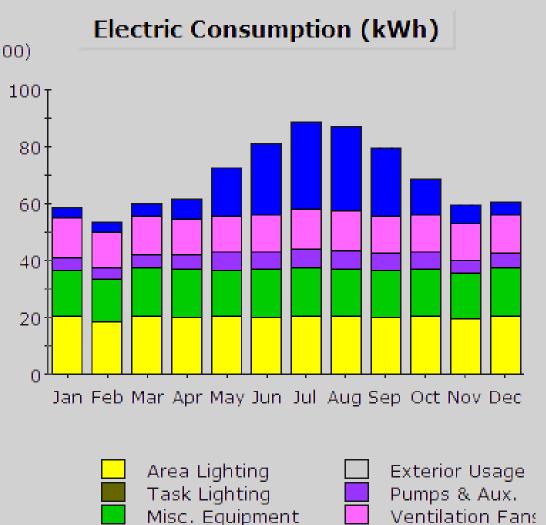
Total Energy Savings: 26% Savings in Electrical Consumption 50% Savings in Natural Gas Consumption

(Introduction Building Overview Overall Goals Mechanical Analysis Alternative 1 Alternative 2


Overall System ASHRAE 15 Compliance Energy Consumption **Operating Cost** Overall Comparison CFD Analysis S Electrical Breadth • Conclusions

 \mathbf{E}

Electric & Natural Gas Consumption


Gas Consumption (Btu) (x000,000) 250_T 200 150 100 50+ Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Water Heating Ht Pump Supp. Space Heating

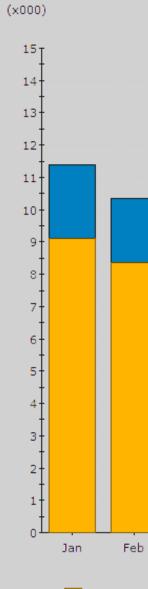
(x000)

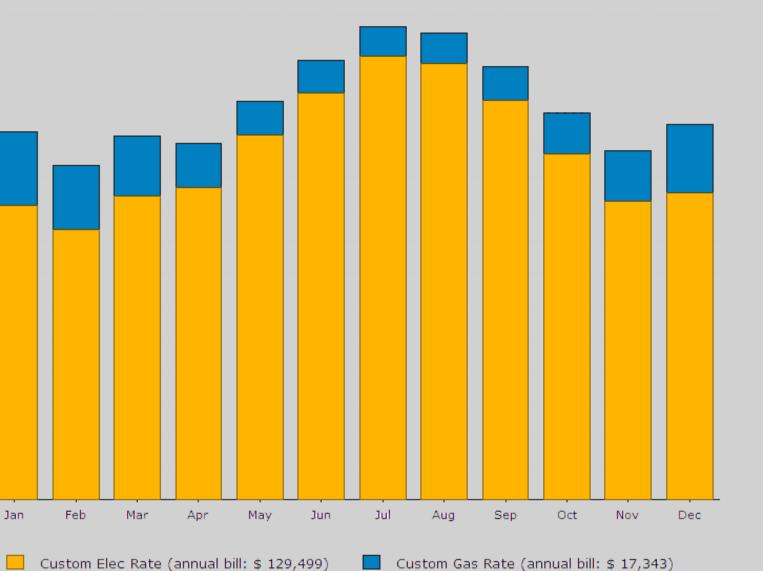
Reductions:

40% Reduction in Space Cooling 44% Reduction in Space Heating

Annual Operating Cost

() Introduction Building Overview Overall Goals J Mechanical Analysis Alternative 1 Alternative 2 Overall System ASHRAE 15 Compliance Energy Consumption **Operating Cost** Overall Comparison CFD Analysis Electrical Breadth • Conclusions


ج الله الح


Annual Operating Cost

 Building Overview Overall Goals Mechanical Analysis Alternative 1 Alternative 2 Overall System ASHRAE 15 Compliance Energy Consumption **Operating Cost** Overall Comparison CFD Analysis • Electrical Breadth • Conclusions

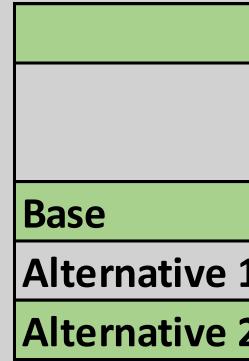
(Introduction

Monthly Utility Bills (\$)

MECHANICAL SYSTEM ANALYSIS ALTERNATIVE 2

Total Cost Savings: 32% Total Annual Savings 26% Savings in Electrical Costs 54% Savings in Natural Gas Consumption \$3.60/SF

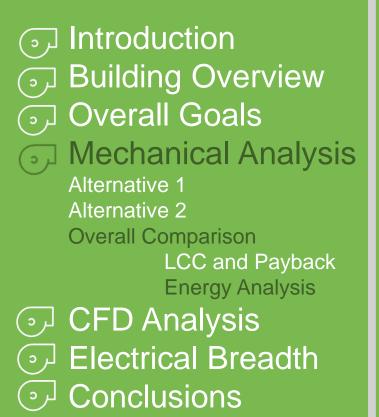
Total Annual Bill Across All Rates: \$ 146,842



MECHANICAL SYSTEM ANALYSIS Overall Comparison

(J Introduction **Building Overview** • Overall Goals Mechanical Analysis Alternative 1 Alternative 2 Overall Comparison LCC and Payback Energy Analysis • CFD Analysis • Electrical Breadth • Conclusions

🤣 🕅


Life Cycle Cost and Payback Period

MECHANICAL SYSTEM ANALYSIS Overall Comparison

	Life Cycle Cost						
	Total Life Cycle		Payback				
	Cost	Savings	Period				
	\$ 4,726,768.09						
1	\$ 4,157,240.30	12%	1.85				
2	\$ 3,771,892.32	20%	4.98				

Cost Basis: 25 Year Equipment Life First Cost: **RS** Means Mechanical Cost Data 2015 Maintenance Cost: RS Means Facilities Maintenance & Repairs 2015 Utility Cost: eQuest Energy Simulation **Escalation Factors:** NIST Handbook 135

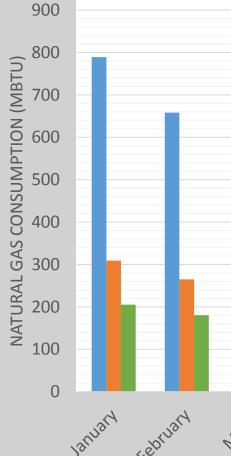
 \mathbf{E}

Energy Analysis



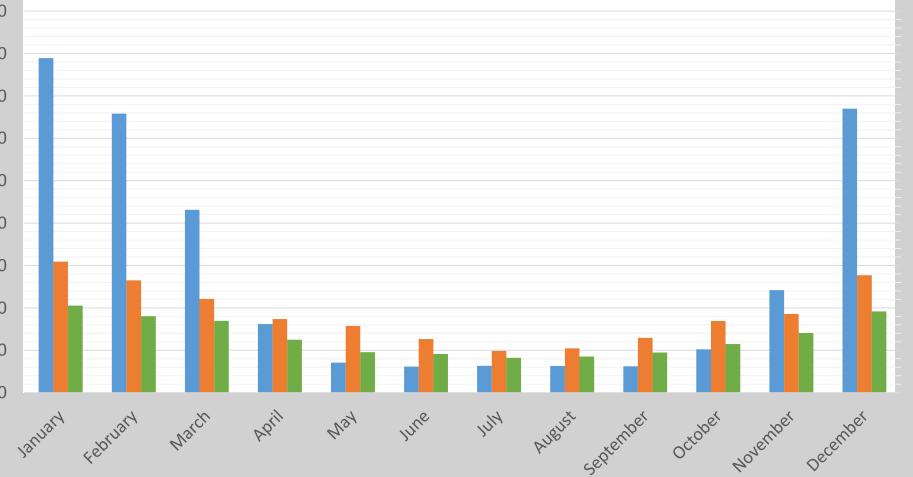
Electric Consumption Comparison

Base Alternative 1 Alternative 2



MECHANICAL SYSTEM ANALYSIS Overall Comparison

1


Energy Analysis

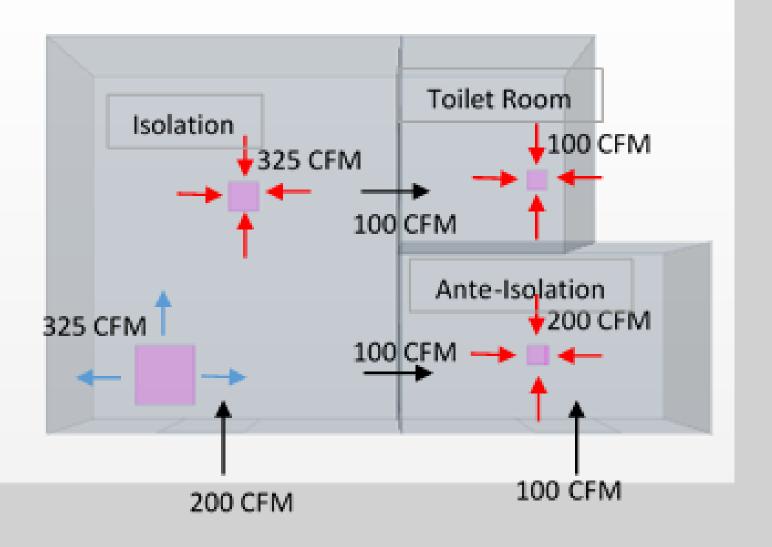
Natural Gas Consumption Comparison

Base Alternative 1 Alternative 2

MECHANICAL SYSTEM ANALYSIS Overall Comparison

 Building Overview J Overall Goals Mechanical Analysis G CFD Analysis Electrical Breadth

Image: Section 1.



OD Computational Fluid Dynamics Masters Coursework

(J Introduction Building Overview • Overall Goals Mechanical Analysis CFD Analysis Geometry Pressure Gradient Temperature Gradient Age of Air Electrical Breadth • Conclusions

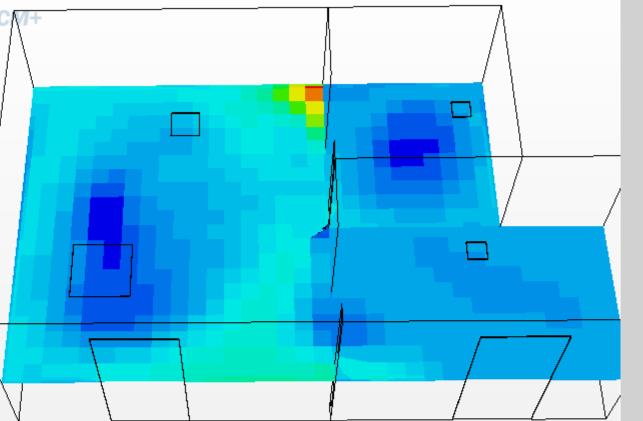
÷ 10 \$

Isolation Room Geometry

Considerations: ASHRAE 170 All Room Requirements: **Negative Pressure Relationship** 70-75° F Design Temperature 12 Total ACH

Introduction ■ Building Overview Overall Goals Mechanical Analysis G CFD Analysis Geometry **Pressure Gradient** Temperature Gradient Age of Air

J Electrical Breadth • Conclusions

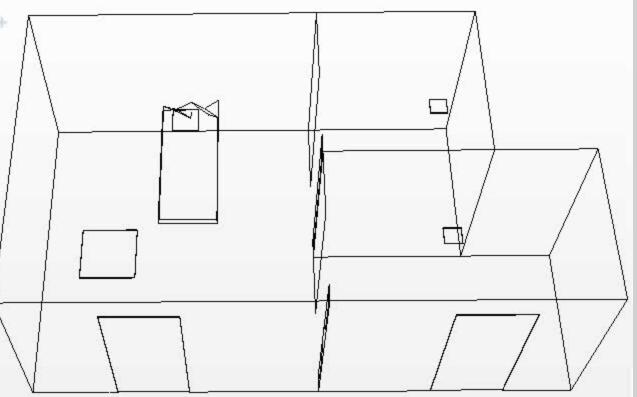

😧 🕅

Pressure Gradient

Considerations: ASHRAE 170 All Room Requirements: **Negative Pressure Relationship** 70-75° F Design Temperature 12 Total ACH

Introduction ■ Building Overview • Overall Goals Mechanical Analysis G CFD Analysis Geometry **Pressure Gradient** Temperature Gradient Age of Air

J Electrical Breadth • Conclusions

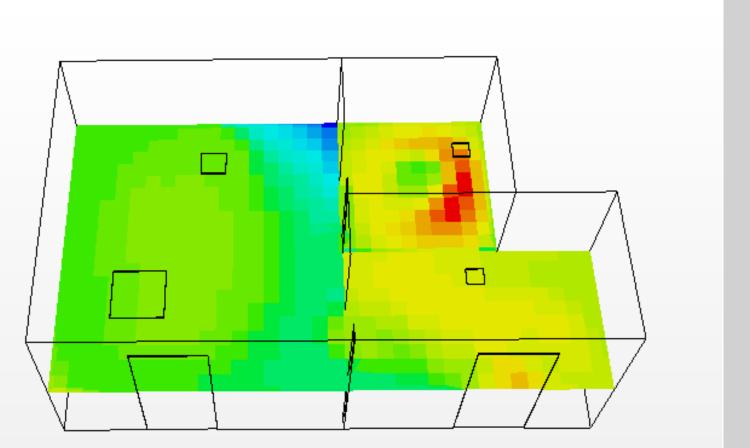

😧 ີ້ໜຶ່


Pressure Gradient

Considerations: ASHRAE 170 All Room Requirements: **Negative Pressure Relationship** 70-75° F Design Temperature 12 Total ACH

Introduction ■ Building Overview Overall Goals Mechanical Analysis J CFD Analysis

Geometry Pressure Gradient Temperature Gradient Age of Air


Electrical Breadth • Conclusions


ີໜີ

Temperature Gradient

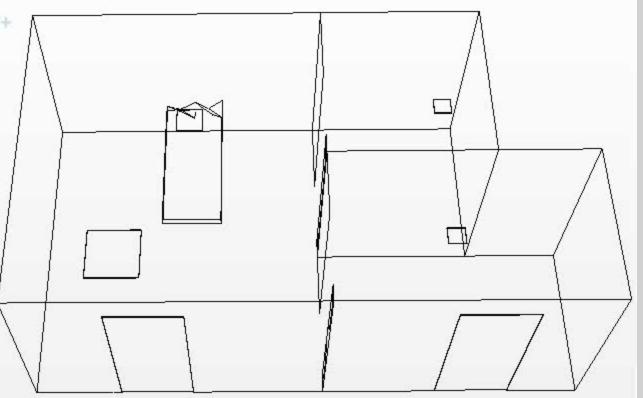
Ž_×

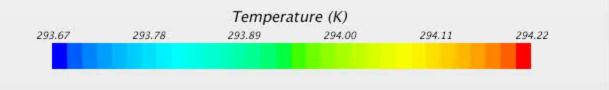
Considerations: ASHRAE 170 All Room Requirements: Negative Pressure Relationship **70-75° F Design Temperature** 12 Total ACH

Introduction ■ Building Overview Overall Goals Mechanical Analysis G CFD Analysis Geometry

Pressure Gradient Temperature Gradient Age of Air

Electrical Breadth • Conclusions


😧 🕅

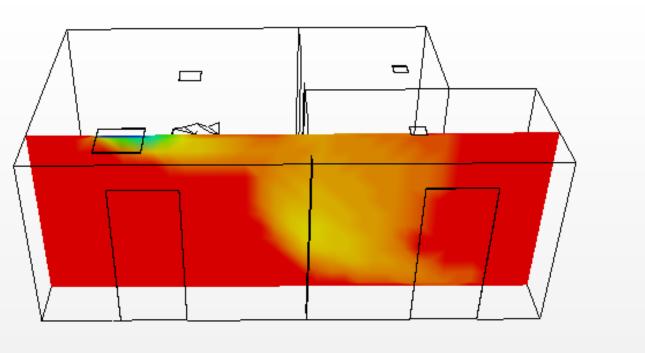

Temperature Gradient

(X

Considerations: ASHRAE 170 All Room Requirements: Negative Pressure Relationship **70-75° F Design Temperature** 12 Total ACH

Age of Air

Pressure Gradient Temperature Gradient Age of Air


Electrical Breadth • Conclusions

😯 🕅

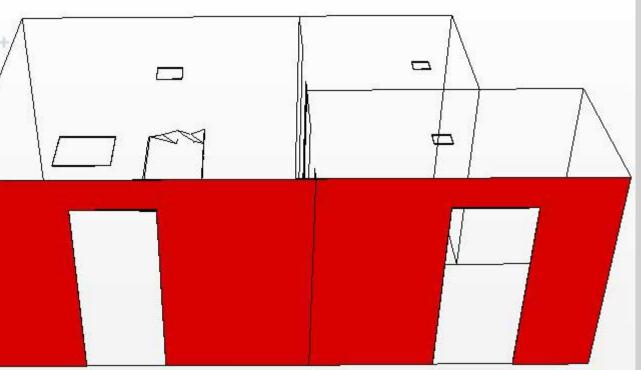
STAR-CCM+

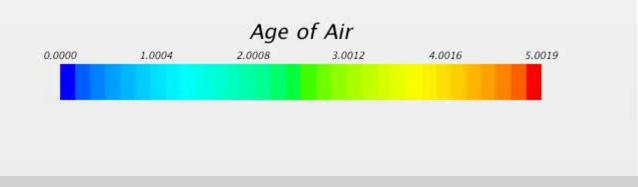
Considerations: ASHRAE 170 All Room Requirements: Negative Pressure Relationship 70-75° F Design Temperature **12 Total ACH**

Age of Air

 Introduction
 ■ Building Overview J Overall Goals Mechanical Analysis G CFD Analysis Geometry

Pressure Gradient Temperature Gradient Age of Air


Electrical Breadth • Conclusions

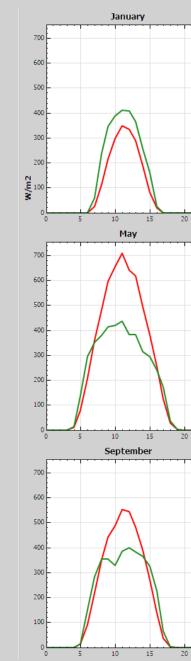

 \mathbf{E}

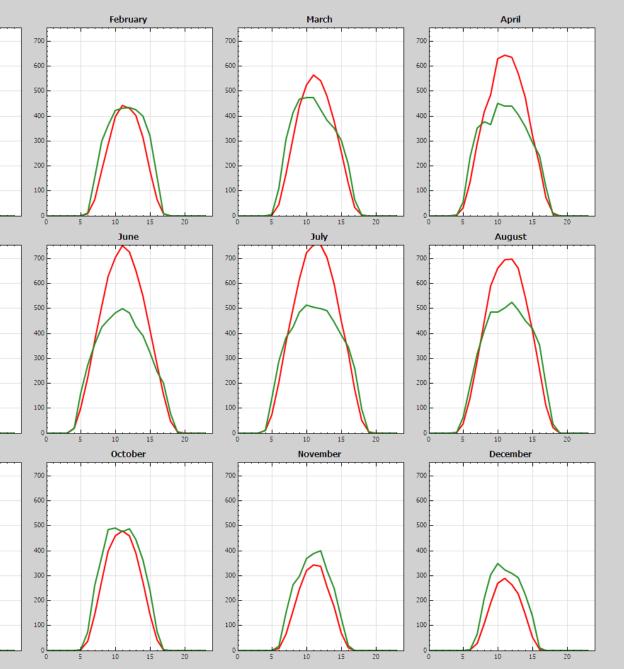
STAR-CCM+

Y L_X

Considerations: ASHRAE 170 All Room Requirements: Negative Pressure Relationship 70-75° F Design Temperature **12 Total ACH**

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1<



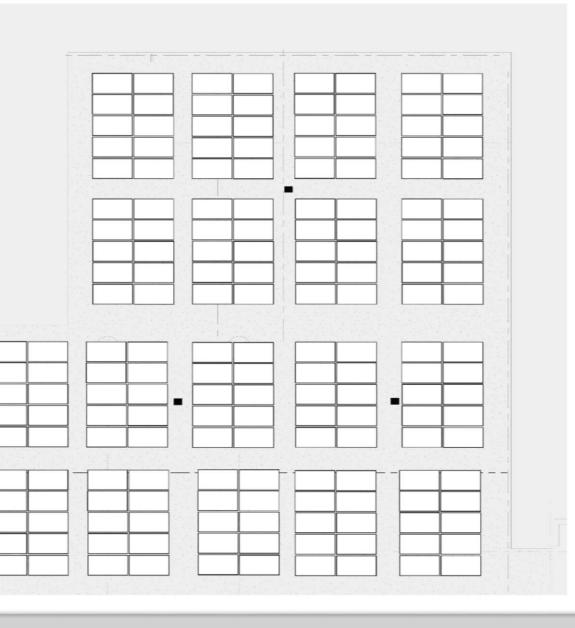


Electrical Breadth Photovoltaic Array

 Introduction
 Building Overview
 Overall Goals
 Mechanical Analysis
 CFD Analysis
 Electrical Breadth Site Information Electric Generation Economics
 Conclusions

Site Information

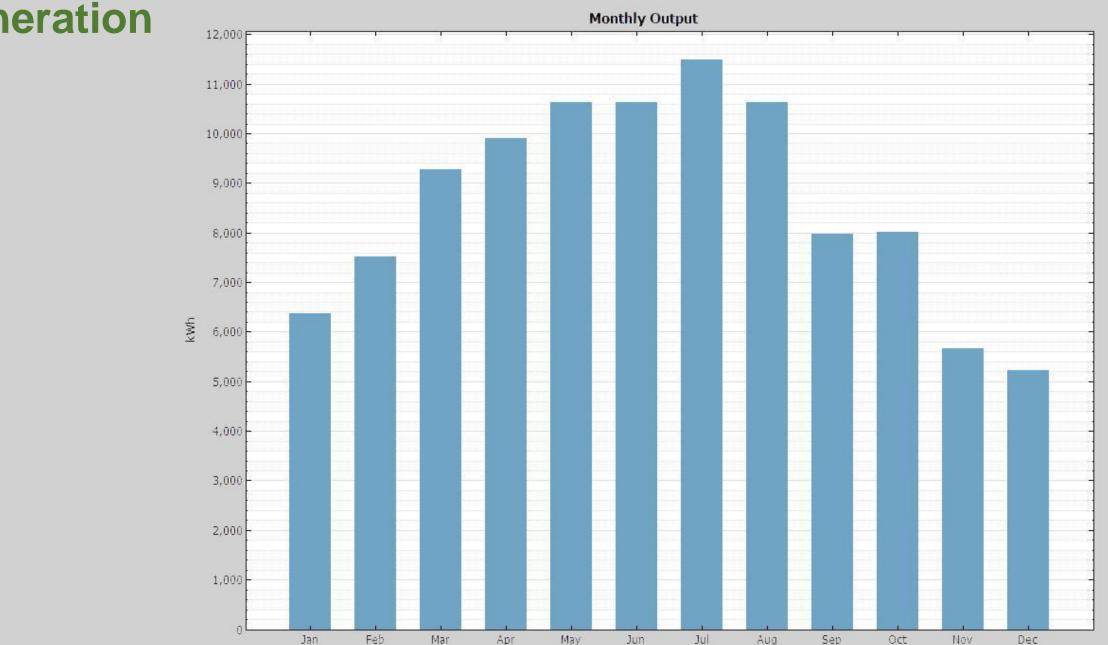
Considerations:


Annual Beam Normal Radiation: 1388.7 kWh/m² Annual Diffuse Radiation: 1454.4 kWh/m²

Electrical Breadth Photovoltaic Array

Introduction Building Overview Overall Goals Mechanical Analysis CFD Analysis CFD Analysis Electrical Breadth Site Information Electric Generation Economics Conclusions

Site Information


Considerations: Latitude: 41.7° Total Area: 3800 SF

Sector Electrical Breadth Photovoltaic Array

Introduction Building Overview Overall Goals Mechanical Analysis • CFD Analysis • Electrical Breadth Site Information **Electric Generation** Economics

• Conclusions

Electric Generation

Considerations:

Total Site Electric Consumption: 831,450 kWh Total Generated by Panels: 103,349 kWh Remaining 88% produced by the grid

Electrical Breadth Photovoltaic Array

 Introduction
 Building Overview
 Overall Goals
 Mechanical Analysis
 CFD Analysis
 Electrical Breadth Site Information Electric Generation Economics
 Conclusions

آنا \$

Photovoltaic Panels Payback					
nual Consumption	Annual Consumption				
Savings Savings		Payback Period (year)			
11,022.58	9%	14.62			

Payback Period:

Initial Investment

Cash Inflow per Period

Sector Electrical Breadth Photovoltaic Array

 Introduction
 Building Overview
 Overall Goals
 Mechanical Analysis
 CFD Analysis
 Electrical Breadth
 Conclusions Recommendations Closing

Recommendations

Alte 26% 3 50% 3 32% 7 23% 0 1.5 Ye

Alternative 2: VRF

- 26% Savings in Electrical Consumption
- 50% Savings in Natural Gas Consumption
- 32% Total Annual Utility Cost Savings
- 23% Cost Savings over the Equipment Life4.5 Year Payback

 Introduction
 Building Overview
 Overall Goals
 Mechanical Analysis
 CFD Analysis
 Electrical Breadth
 Conclusions Recommendations

Closing

Recommendations

Pho 12% I 9% R 14.5 `

Photovoltaic Array

- 12% Reduction in Electrical Grid Generation
- 9% Reduction in Annual Cost
- 14.5 Year Payback

Or Conclusions

 Introduction
 Building Overview
 Overall Goals
 Mechanical Analysis
 CFD Analysis
 Electrical Breadth
 Conclusions Recommendations

Closing

Acknowledgments

Brian Sampson

Ed Marchand

Stacie Suh

Dr. William Bahnfleth Professor – Penn State AE Department

Dr. Donghyun Rim

HVAC Engineer – BR+A Consulting Engineers, LLC

Senior Associate BR+A Consulting Engineers, LLC

Engineering Account Executive - Stebbins Duffy, Inc.

n Assistant Professor – Penn State AE Department

PSU Architectural Engineering Department Faculty and Staff AE Class of 2015 Friends & Family

• Conclusions

Introduction
Building Overview
Overall Goals
Mechanical Analysis
CFD Analysis
Electrical Breadth
Conclusions Recommendations Closing

MORTON HOSPITAL EXPANSION

• Conclusions

Introduction
Building Overview
Overall Goals
Mechanical Analysis
CFD Analysis
Electrical Breadth
Conclusions Recommendations Closing

MORTON HOSPITAL EXPANSION

• Conclusions